game_solver/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
//! `game_solver` is a library for solving games.
//!
//! If you want to read how to properly use this library,
//! [the book](https://leodog896.github.io/game-solver/book) is
//! a great place to start.
pub mod game;
pub mod player;
// TODO: reinforcement
// #[cfg(feature = "reinforcement")]
// pub mod reinforcement;
pub mod transposition;
use core::panic;
#[cfg(feature = "rayon")]
use std::hash::BuildHasher;
use game::{upper_bound, GameState};
use player::TwoPlayer;
use crate::game::Game;
use crate::transposition::{Score, TranspositionTable};
use std::hash::Hash;
/// Runs the two-player minimax variant on a zero-sum game.
/// Since it uses alpha-beta pruning, you can specify an alpha beta window.
fn negamax<T: Game<Player = impl TwoPlayer> + Eq + Hash>(
game: &T,
transposition_table: &mut dyn TranspositionTable<T>,
mut alpha: isize,
mut beta: isize,
) -> Result<isize, T::MoveError> {
// TODO(perf): if find_immediately_resolvable_game satisfies its contract,
// we can ignore this at larger depths.
match game.state() {
GameState::Playable => (),
GameState::Tie => return Ok(0),
GameState::Win(winning_player) => {
// The next player is the winning player - the score should be positive.
if game.player() == winning_player {
return Ok(upper_bound(game) - game.move_count() as isize);
} else {
return Ok(-(upper_bound(game) - game.move_count() as isize));
}
}
};
// check if this is a winning configuration
if let Ok(Some(board)) = game.find_immediately_resolvable_game() {
match board.state() {
GameState::Playable => panic!("A resolvable game should not be playable."),
GameState::Tie => return Ok(0),
GameState::Win(winning_player) => {
if game.player().turn() == winning_player {
return Ok(upper_bound(&board) - board.move_count() as isize);
} else {
return Ok(-(upper_bound(&board) - board.move_count() as isize));
}
}
}
}
// fetch values from the transposition table
{
let score = transposition_table
.get(game)
.unwrap_or_else(|| Score::UpperBound(upper_bound(game)));
match score {
Score::UpperBound(max) => {
if beta > max {
beta = max;
if alpha >= beta {
return Ok(beta);
}
}
}
Score::LowerBound(min) => {
if alpha < min {
alpha = min;
if alpha >= beta {
return Ok(alpha);
}
}
}
};
}
// for [principal variation search](https://www.chessprogramming.org/Principal_Variation_Search)
let mut first_child = true;
for m in &mut game.possible_moves() {
let mut board = game.clone();
board.make_move(&m)?;
let score = if first_child {
-negamax(&board, transposition_table, -beta, -alpha)?
} else {
let score = -negamax(&board, transposition_table, -alpha - 1, -alpha)?;
if score > alpha {
-negamax(&board, transposition_table, -beta, -alpha)?
} else {
score
}
};
// alpha-beta pruning - we can return early
if score >= beta {
transposition_table.insert(game.clone(), Score::LowerBound(score));
return Ok(beta);
}
if score > alpha {
alpha = score;
}
first_child = false;
}
transposition_table.insert(game.clone(), Score::UpperBound(alpha));
Ok(alpha)
}
/// Solves a game, returning the evaluated score.
///
/// The score of a position is defined by the best possible end result for the player whose turn it is.
/// In 2 player games, if a score > 0, then the player whose turn it is has a winning strategy.
/// If a score < 0, then the player whose turn it is has a losing strategy.
/// Else, the game is a draw (score = 0).
pub fn solve<T: Game<Player = impl TwoPlayer> + Eq + Hash>(
game: &T,
transposition_table: &mut dyn TranspositionTable<T>,
) -> Result<isize, T::MoveError> {
let mut alpha = -upper_bound(game);
let mut beta = upper_bound(game) + 1;
// we're trying to guess the score of the board via null windows
while alpha < beta {
let med = alpha + (beta - alpha) / 2;
// do a [null window search](https://www.chessprogramming.org/Null_Window)
let evaluation = negamax(game, transposition_table, med, med + 1)?;
if evaluation <= med {
beta = evaluation;
} else {
alpha = evaluation;
}
}
Ok(alpha)
}
/// Utility function to get a list of the move scores of a certain game.
/// Since its evaluating the same game, you can use the same transposition table.
///
/// If you want to evaluate the score of a board as a whole, use the `solve` function.
///
/// # Returns
///
/// An iterator of tuples of the form `(move, score)`.
pub fn move_scores<'a, T: Game<Player = impl TwoPlayer> + Eq + Hash>(
game: &'a T,
transposition_table: &'a mut dyn TranspositionTable<T>,
) -> impl Iterator<Item = Result<(T::Move, isize), T::MoveError>> + 'a {
game.possible_moves().map(move |m| {
let mut board = game.clone();
board.make_move(&m)?;
// We flip the sign of the score because we want the score from the
// perspective of the player playing the move, not the player whose turn it is.
Ok((m, -solve(&board, transposition_table)?))
})
}
type CollectedMoves<T> = Vec<Result<(<T as Game>::Move, isize), <T as Game>::MoveError>>;
/// Parallelized version of `move_scores`. (faster by a large margin)
/// This requires the `rayon` feature to be enabled.
/// It uses rayon's parallel iterators to evaluate the scores of each move in parallel.
///
/// This also allows you to pass in your own hasher, for transposition table optimization.
///
/// # Returns
///
/// A vector of tuples of the form `(move, score)`.
#[cfg(feature = "rayon")]
pub fn par_move_scores_with_hasher<
T: Game<Player = impl TwoPlayer> + Eq + Hash + Sync + Send + 'static,
S,
>(
game: &T,
) -> CollectedMoves<T>
where
T::Move: Sync + Send,
T::MoveError: Sync + Send,
S: BuildHasher + Default + Sync + Send + Clone + 'static,
{
use crate::transposition::TranspositionCache;
use rayon::prelude::*;
use std::sync::Arc;
// we need to collect it first as we cant parallelize an already non-parallel iterator
let all_moves = game.possible_moves().collect::<Vec<_>>();
let hashmap = Arc::new(TranspositionCache::<T, S>::new());
all_moves
.par_iter()
.map(move |m| {
let mut board = game.clone();
board.make_move(m)?;
// We flip the sign of the score because we want the score from the
// perspective of the player pla`ying the move, not the player whose turn it is.
let mut map = Arc::clone(&hashmap);
Ok(((*m).clone(), -solve(&board, &mut map)?))
})
.collect::<Vec<_>>()
}
/// Parallelized version of `move_scores`. (faster by a large margin)
/// This requires the `rayon` feature to be enabled.
/// It uses rayon's parallel iterators to evaluate the scores of each move in parallel.
///
/// By default, this uses the cryptograpphically unsecure `XxHash64` hasher.
/// If you want to use your own hasher, use [`par_move_scores_with_hasher`].
///
/// # Returns
///
/// A vector of tuples of the form `(move, score)`.
#[cfg(feature = "rayon")]
pub fn par_move_scores<T: Game<Player = impl TwoPlayer> + Eq + Hash + Sync + Send + 'static>(
game: &T,
) -> CollectedMoves<T>
where
T::Move: Sync + Send,
T::MoveError: Sync + Send,
{
if cfg!(feature = "xxhash") {
use twox_hash::RandomXxHashBuilder64;
par_move_scores_with_hasher::<T, RandomXxHashBuilder64>(game)
} else {
use std::collections::hash_map::RandomState;
par_move_scores_with_hasher::<T, RandomState>(game)
}
}